Moving mesh partial differential equations to describe nematic order dynamics
نویسندگان
چکیده
منابع مشابه
Moving Mesh Partial Differential Equations
In this paper we consider several moving mesh partial diierential equations which are related to the equidistribution principle. Several of these are new, and some correspond to discrete moving mesh equations which have been used by others. An analysis of their stability is done. It is seen that a key term for most of these moving mesh PDEs is a source-like term which measures the level of equi...
متن کاملVelocity-based moving mesh methods for nonlinear partial differential equations
This article describes a number of velocity-based moving mesh numerical methods for multidimensional nonlinear time-dependent partial differential equations (PDEs). It consists of a short historical review followed by a detailed description of a recently developed multidimensional moving mesh finite element method based on conservation. Finite element algorithms are derived for both mass-conser...
متن کاملAnalysis of Moving Mesh Partial Differential Equations with Spatial Smoothing∗
Two moving mesh partial differential equations (MMPDEs) with spatial smoothing are derived based upon the equidistribution principle. This smoothing technique is motivated by the robust moving mesh method of Dorfi and Drury [J. Comput. Phys., 69 (1987), pp. 175–195]. It is shown that under weak conditions the basic property of no node-crossing is preserved by the spatial smoothing, and a local ...
متن کاملMoving Mesh Methods for Solving Parabolic Partial Differential Equations
In this thesis, we introduce and assess a new adaptive method for solving non-linear parabolic partial differential equations with fixed or moving boundaries, using a moving mesh with continuous finite elements. The evolution of the mesh within the interior of the spatial domain is based upon conserving the distribution of a chosen monitor function across the domain throughout time, where the i...
متن کاملStability of Moving Mesh Systems of Partial Differential Equations
Moving mesh methods based on the equidistribution principle (EP) are studied from the viewpoint of stability of the moving mesh system of differential equations. For fine spatial grids, the moving mesh system inherits the stability of the original discretized partial differential equation (PDE). Unfortunately, for some PDEs the moving mesh methods require so many spatial grid points that they n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2010
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2010.08.014